An Arabidopsis chloroplast RNA-binding protein gene encodes multiple mRNAs with different 5' ends.
نویسندگان
چکیده
An Arabidopsis cDNA (Atrbp33) encoding a nuclear-encoded chloroplast RNA-binding protein (RBP) has been isolated (A.J. DeLisle [1993] Plant Physiol 102: 313-314). ATRBP33 shares global structural homology with all known chloroplast RBPs: a chloroplast transit peptide in the amino terminus, followed by a unique acidic domain and a tandem pair of ribonucleoprotein consensus sequence-type RNA-binding domains in the carboxyl end. In vitro translation products of Atrbp33 were found to be imported into chloroplasts, suggesting that ATRBP33 is localized in chloroplasts. The expression of Atrbp33 was higher in chloroplast-containing organs than in nonchloroplast-containing organs. Furthermore, Atrbp33 was expressed in a light-dependent manner. These features are consistent with its postulated role in posttranscriptional control of chloroplast genes. Northern analyses and RNase protection assays showed that as many as nine messages are encoded by the single Atrbp33 gene. Sequence analysis of the cDNAs indicated that some of the transcripts have truncated 5' ends. Most interestingly, the multiple mRNAs potentially encode different polypeptides, one of which lacks a chloroplast transit peptide and acidic domain and contains only one intact RNA-binding domain. Unlike the chloroplast-localized ATRBP33, the truncated polypeptide may function in other cellular compartments.
منابع مشابه
Complex Processing Patterns of mRNAs of the Large ATP Synthase Operon in Arabidopsis Chloroplasts
Chloroplasts are photosynthetic cell organelles which have evolved from endosymbiosis of the cyanobacterial ancestor. In chloroplasts, genes are still organized into transcriptional units as in bacteria but the corresponding poly-cistronic mRNAs undergo complex processing events, including inter-genic cleavage and 5' and 3' end-definition. The current model for processing proposes that the 3' e...
متن کاملSystematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms
Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA ...
متن کاملShort non-coding RNA fragments accumulating in chloroplasts: footprints of RNA binding proteins?
Chloroplast RNA metabolism is controlled and excecuted by hundreds of nuclear-encoded, chloroplast-localized RNA binding proteins. Contrary to the nucleo-cytosolic compartment or bacteria, there is little evidence for non-coding RNAs that play a role as riboregulators of chloroplasts. We mined deep-sequencing datasets to identify short (16-28 nt) RNAs in the chloroplast genome and found 50 abun...
متن کاملArabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts
The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have...
متن کاملRNase J participates in a pentatricopeptide repeat protein-mediated 5′ end maturation of chloroplast mRNAs
Nucleus-encoded ribonucleases and RNA-binding proteins influence chloroplast gene expression through their roles in RNA maturation and stability. One mechanism for mRNA 5' end maturation posits that sequence-specific pentatricopeptide repeat (PPR) proteins define termini by blocking the 5'→3' exonucleolytic activity of ribonuclease J (RNase J). To test this hypothesis in vivo, virus-induced gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 106 1 شماره
صفحات -
تاریخ انتشار 1994